If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+54y+48=0
a = 6; b = 54; c = +48;
Δ = b2-4ac
Δ = 542-4·6·48
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-42}{2*6}=\frac{-96}{12} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+42}{2*6}=\frac{-12}{12} =-1 $
| k/3+6=17 | | 4x+36=13x-94 | | b*3=15.2 | | -4(-3x+5)=6 | | 6(y+5)-3y=y | | 8d+4=44 | | 1x+1/2x+1/10x=1.44 | | 7x+3+5x=6x-9 | | I8/11(t-10)=64 | | 5m-9=4m+3 | | 0=16t^2-27t+180 | | 49a=21 | | 2^3x+1=5^x-3 | | 17=u/4-11 | | 2x−10=40 | | 5w-9=81 | | -16(x-3)=-4(4+4x) | | 3+7=2x | | n-8/1/8=11/6/7 | | 8x+4+10x-12+7x-2=180 | | -1/2(8a+16)=-2a+4 | | -7+2(-x-21)=30 | | 6(x-3)=-18+6x | | 8z+7-4z=-2z+1 | | -7+2(-x-21=30 | | 4(6x-3)+5x=5 | | 1c+5c+10c=$1.44 | | 8x-72=10x | | -15+3x=4(x-3) | | 2y+6=-4y-30 | | (2√3x^2)+3x=45 | | 5x+-2(2x+2)=-15 |